

SINCE 1965

Mismatch Tolerant®

High Power, Multi-Octave Performance

Directional Couplers

0° Combiners /
Dividers

90° Hybrid Couplers

180° Hybrid Couplers

Absorptive Filters

High Power Absorptive Filters

- Low Pass
- High Pass
- Band Pass
- Notch
- Cross Band

Absorptive Filters

Model	Туре	Frequency	Power	
	-31 -32	(MHz)	(Watts CW)	
AF9438	Low Pass	1-30	5,000	1
AF9349	Low Pass	10-150	500	
AF9255	Low Pass	10-170	100	
AF9350	Low Pass	10-500	400	
AF9560	Notch	10-3000	400	
AF9456	Low Pass	30-400	400	
AF9187	Low Pass	450-490	100	
DP9222	Cross Band	450-890	100	-
AF9256	High Pass	806-2000	100	

Traditional Filter: Reflective Type

Characteristics of a Reflective Filter

- <u>In-Band</u> Signals are transmitted through the filter to the output port. The shape (magnitude & phase) of the transmission is that of S21.
- <u>Out-of-Band</u> Signals are reflected back to the source. The shape (magnitude & phase) of the reflection is that of S11 & S22.

Shortcomings of Reflective Filter Approach

- Usually, a Reflective Low Pass Filter is placed at the output of a PA to remove harmonics and outof-band intermodulation. All out-of-band signals are <u>reflected back</u> to the source, or the load.
- These reflected signals <u>excite the non-linear behaviors of the PA</u>, especially when the frequencies of these signals are near or are harmonically related to the frequencies of interest. This causes the PA to generate more inter-modulation products.
- These reflections also cause <u>instability effects</u>.
- High susceptibility to <u>temperature change</u>.
- Performance degradation at <u>other than 50 Ohms</u>.

Absorptive Filter Approach

How Does it Work?

• <u>In-Band</u> signals pass through the filter and the shape (magnitude & phase) of the transmission is that of \$21.

• There is little penalty in terms of insertion loss due to the presence of the internal termination and excellent return loss, both in and out-of-band.

Key Benefits of Absorptive Filters

- **Mismatch Tolerant** [®] Design eliminates the dependency of system on the length of interconnect cables. Between two non-perfect components (between power amplifier and antenna or between LNA and a mixer.)
- Use of low Q resonators = less susceptibility to temperature change.

Eliminates:

- Instability of power amplifiers at out-of-band frequencies.
- Excessive In-Band ripples due of out-of-band reflected energies.
- Potential damage to power amplifier due to reflection of high power out-of-band energies.
- The false trigger of power-detector circuitry due to reflected harmonics.

Absorptive VHF Low Pass Filter

Model AF9349

VHF: AF9349

Absorptive UHF Low Pass Filter

Model AF9350

UHF: AF9350

